GPU-accelerated data curation for LLM training. Supports text/image/video/audio. Features fuzzy deduplication (16× faster), quality filtering (30+ heuristics), semantic deduplication, PII redaction, NSFW detection. Scales across GPUs with RAPIDS. Use for preparing high-quality training datasets, cleaning web data, or deduplicating large corpora.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: nemo-curator description: GPU-accelerated data curation for LLM training. Supports text/image/video/audio. Features fuzzy deduplication (16× faster), quality filtering (30+ heuristics), semantic deduplication, PII redaction, NSFW detection. Scales across GPUs with RAPIDS. Use for preparing high-quality training datasets, cleaning web data, or deduplicating large corpora. version: 1.0.0 author: Orchestra Research license: MIT tags: [Data Processing, NeMo Curator, Data Curation, GPU Acceleration, Deduplication, Quality Filtering, NVIDIA, RAPIDS, PII Redaction, Multimodal, LLM Training Data] dependencies: [nemo-curator, cudf, dask, rapids]
NeMo Curator - GPU-Accelerated Data Curation
NVIDIA's toolkit for preparing high-quality training data for LLMs.
When to use NeMo Curator
Use NeMo Curator when:
- Preparing LLM training data from web scrapes (Common Crawl)
- Need fast deduplication (16× faster than CPU)
- Curating multi-modal datasets (text, images, video, audio)
- Filtering low-quality or toxic content
- Scaling data processing across GPU cluster
Performance:
- 16× faster fuzzy deduplication (8TB RedPajama v2)
- 40% lower TCO vs CPU alternatives
- Near-linear scaling across GPU nodes
Use alternatives instead:
- datatrove: CPU-based, open-source data processing
- dolma: Allen AI's data toolkit
- Ray Data: General ML data processing (no curation focus)
Quick start
Installation
# Text curation (CUDA 12)
uv pip install "nemo-curator[text_cuda12]"
# All modalities
uv pip install "nemo-curator[all_cuda12]"
# CPU-only (slower)
uv pip install "nemo-curator[cpu]"
Basic text curation pipeline
from nemo_curator import ScoreFilter, Modify
from nemo_curator.datasets import DocumentDataset
import pandas as pd
# Load data
df = pd.DataFrame({"text": ["Good document", "Bad doc", "Excellent text"]})
dataset = DocumentDataset(df)
# Quality filtering
def quality_score(doc):
return len(doc["text"].split()) > 5 # Filter short docs
filtered = ScoreFilter(quality_score)(dataset)
# Deduplication
from nemo_curator.modules import ExactDuplicates
deduped = ExactDuplicates()(filtered)
# Save
deduped.to_parquet("curated_data/")
Data curation pipeline
Stage 1: Quality filtering
from nemo_curator.filters import (
WordCountFilter,
RepeatedLinesFilter,
UrlRatioFilter,
NonAlphaNumericFilter
)
# Apply 30+ heuristic filters
from nemo_curator import ScoreFilter
# Word count filter
dataset = dataset.filter(WordCountFilter(min_words=50, max_words=100000))
# Remove repetitive content
dataset = dataset.filter(RepeatedLinesFilter(max_repeated_line_fraction=0.3))
# URL ratio filter
dataset = dataset.filter(UrlRatioFilter(max_url_ratio=0.2))
Stage 2: Deduplication
Exact deduplication:
from nemo_curator.modules import ExactDuplicates
# Remove exact duplicates
deduped = ExactDuplicates(id_field="id", text_field="text")(dataset)
Fuzzy deduplication (16× faster on GPU):
from nemo_curator.modules import FuzzyDuplicates
# MinHash + LSH deduplication
fuzzy_dedup = FuzzyDuplicates(
id_field="id",
text_field="text",
num_hashes=260, # MinHash parameters
num_buckets=20,
hash_method="md5"
)
deduped = fuzzy_dedup(dataset)
Semantic deduplication:
from nemo_curator.modules import SemanticDuplicates
# Embedding-based deduplication
semantic_dedup = SemanticDuplicates(
id_field="id",
text_field="text",
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
threshold=0.8 # Cosine similarity threshold
)
deduped = semantic_dedup(dataset)
Stage 3: PII redaction
from nemo_curator.modules import Modify
from nemo_curator.modifiers import PIIRedactor
# Redact personally identifiable information
pii_redactor = PIIRedactor(
supported_entities=["EMAIL_ADDRESS", "PHONE_NUMBER", "PERSON", "LOCATION"],
anonymize_action="replace" # or "redact"
)
redacted = Modify(pii_redactor)(dataset)
Stage 4: Classifier filtering
from nemo_curator.classifiers import QualityClassifier
# Quality classification
quality_clf = QualityClassifier(
model_path="nvidia/quality-classifier-deberta",
batch_size=256,
device="cuda"
)
# Filter low-quality documents
high_quality = dataset.filter(lambda doc: quality_clf(doc["text"]) > 0.5)
GPU acceleration
GPU vs CPU performance
| Operation | CPU (16 cores) | GPU (A100) | Speedup |
|---|---|---|---|
| Fuzzy dedup (8TB) | 120 hours | 7.5 hours | 16× |
| Exact dedup (1TB) | 8 hours | 0.5 hours | 16× |
| Quality filtering | 2 hours | 0.2 hours | 10× |
Multi-GPU scaling
from nemo_curator import get_client
import dask_cuda
# Initialize GPU cluster
client = get_client(cluster_type="gpu", n_workers=8)
# Process with 8 GPUs
deduped = FuzzyDuplicates(...)(dataset)
Multi-modal curation
Image curation
from nemo_curator.image import (
AestheticFilter,
NSFWFilter,
CLIPEmbedder
)
# Aesthetic scoring
aesthetic_filter = AestheticFilter(threshold=5.0)
filtered_images = aesthetic_filter(image_dataset)
# NSFW detection
nsfw_filter = NSFWFilter(threshold=0.9)
safe_images = nsfw_filter(filtered_images)
# Generate CLIP embeddings
clip_embedder = CLIPEmbedder(model="openai/clip-vit-base-patch32")
image_embeddings = clip_embedder(safe_images)
Video curation
from nemo_curator.video import (
SceneDetector,
ClipExtractor,
InternVideo2Embedder
)
# Detect scenes
scene_detector = SceneDetector(threshold=27.0)
scenes = scene_detector(video_dataset)
# Extract clips
clip_extractor = ClipExtractor(min_duration=2.0, max_duration=10.0)
clips = clip_extractor(scenes)
# Generate embeddings
video_embedder = InternVideo2Embedder()
video_embeddings = video_embedder(clips)
Audio curation
from nemo_curator.audio import (
ASRInference,
WERFilter,
DurationFilter
)
# ASR transcription
asr = ASRInference(model="nvidia/stt_en_fastconformer_hybrid_large_pc")
transcribed = asr(audio_dataset)
# Filter by WER (word error rate)
wer_filter = WERFilter(max_wer=0.3)
high_quality_audio = wer_filter(transcribed)
# Duration filtering
duration_filter = DurationFilter(min_duration=1.0, max_duration=30.0)
filtered_audio = duration_filter(high_quality_audio)
Common patterns
Web scrape curation (Common Crawl)
from nemo_curator import ScoreFilter, Modify
from nemo_curator.filters import *
from nemo_curator.modules import *
from nemo_curator.datasets import DocumentDataset
# Load Common Crawl data
dataset = DocumentDataset.read_parquet("common_crawl/*.parquet")
# Pipeline
pipeline = [
# 1. Quality filtering
WordCountFilter(min_words=100, max_words=50000),
RepeatedLinesFilter(max_repeated_line_fraction=0.2),
SymbolToWordRatioFilter(max_symbol_to_word_ratio=0.3),
UrlRatioFilter(max_url_ratio=0.3),
# 2. Language filtering
LanguageIdentificationFilter(target_languages=["en"]),
# 3. Deduplication
ExactDuplicates(id_field="id", text_field="text"),
FuzzyDuplicates(id_field="id", text_field="text", num_hashes=260),
# 4. PII redaction
PIIRedactor(),
# 5. NSFW filtering
NSFWClassifier(threshold=0.8)
]
# Execute
for stage in pipeline:
dataset = stage(dataset)
# Save
dataset.to_parquet("curated_common_crawl/")
Distributed processing
from nemo_curator import get_client
from dask_cuda import LocalCUDACluster
# Multi-GPU cluster
cluster = LocalCUDACluster(n_workers=8)
client = get_client(cluster=cluster)
# Process large dataset
dataset = DocumentDataset.read_parquet("s3://large_dataset/*.parquet")
deduped = FuzzyDuplicates(...)(dataset)
# Cleanup
client.close()
cluster.close()
Performance benchmarks
Fuzzy deduplication (8TB RedPajama v2)
- CPU (256 cores): 120 hours
- GPU (8× A100): 7.5 hours
- Speedup: 16×
Exact deduplication (1TB)
- CPU (64 cores): 8 hours
- GPU (4× A100): 0.5 hours
- Speedup: 16×
Quality filtering (100GB)
- CPU (32 cores): 2 hours
- GPU (2× A100): 0.2 hours
- Speedup: 10×
Cost comparison
CPU-based curation (AWS c5.18xlarge × 10):
- Cost: $3.60/hour × 10 = $36/hour
- Time for 8TB: 120 hours
- Total: $4,320
GPU-based curation (AWS p4d.24xlarge × 2):
- Cost: $32.77/hour × 2 = $65.54/hour
- Time for 8TB: 7.5 hours
- Total: $491.55
Savings: 89% reduction ($3,828 saved)
Supported data formats
- Input: Parquet, JSONL, CSV
- Output: Parquet (recommended), JSONL
- WebDataset: TAR archives for multi-modal
Use cases
Production deployments:
- NVIDIA used NeMo Curator to prepare Nemotron-4 training data
- Open-source datasets curated: RedPajama v2, The Pile
References
- Filtering Guide - 30+ quality filters, heuristics
- Deduplication Guide - Exact, fuzzy, semantic methods
Resources
- GitHub: https://github.com/NVIDIA/NeMo-Curator ⭐ 500+
- Docs: https://docs.nvidia.com/nemo-framework/user-guide/latest/datacuration/
- Version: 0.4.0+
- License: Apache 2.0
More by davila7
View allBuild complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Agile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
