elithrar

agents-sdk

@elithrar/agents-sdk
elithrar
137
13 forks
Updated 1/18/2026
View on GitHub

Build stateful AI agents using the Cloudflare Agents SDK. Load when creating agents with persistent state, scheduling, RPC, MCP servers, email handling, or streaming chat. Covers Agent class, AIChatAgent, state management, and Code Mode for reduced token usage.

Installation

$skills install @elithrar/agents-sdk
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Path.config/opencode/skill/agents-sdk/SKILL.md
Branchmain
Scoped Name@elithrar/agents-sdk

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: agents-sdk description: Build stateful AI agents using the Cloudflare Agents SDK. Load when creating agents with persistent state, scheduling, RPC, MCP servers, email handling, or streaming chat. Covers Agent class, AIChatAgent, state management, and Code Mode for reduced token usage.

Cloudflare Agents SDK

Build persistent, stateful AI agents on Cloudflare Workers using the agents npm package.

FIRST: Verify Installation

npm install agents

Agents require a binding in wrangler.jsonc:

{
  "durable_objects": {
    // "class_name" must match your Agent class name exactly
    "bindings": [{ "name": "Counter", "class_name": "Counter" }]
  },
  "migrations": [
    // Required: list all Agent classes for SQLite storage
    { "tag": "v1", "new_sqlite_classes": ["Counter"] }
  ]
}

Choosing an Agent Type

Use CaseBase ClassPackage
Custom state + RPC, no chatAgentagents
Chat with message persistenceAIChatAgent@cloudflare/ai-chat
Building an MCP serverMcpAgentagents/mcp

Key Concepts

  • Agent base class provides state, scheduling, RPC, MCP, and email capabilities
  • AIChatAgent adds streaming chat with automatic message persistence and resumable streams
  • Code Mode generates executable code instead of tool calls—reduces token usage significantly
  • this.state / this.setState() - automatic persistence to SQLite, broadcasts to clients
  • this.schedule() - schedule tasks at Date, delay (seconds), or cron expression
  • @callable decorator - expose methods to clients via WebSocket RPC

Quick Reference

TaskAPI
Persist statethis.setState({ count: 1 })
Read statethis.state.count
Schedule taskthis.schedule(60, "taskMethod", payload)
Schedule cronthis.schedule("0 * * * *", "hourlyTask")
Cancel schedulethis.cancelSchedule(id)
Queue taskthis.queue("processItem", payload)
SQL querythis.sql`SELECT * FROM users WHERE id = ${id}`
RPC method@callable() async myMethod() { ... }
Streaming RPC@callable({ streaming: true }) async stream(res) { ... }

Minimal Agent

import { Agent, routeAgentRequest, callable } from "agents";

type State = { count: number };

export class Counter extends Agent<Env, State> {
  initialState = { count: 0 };

  @callable()
  increment() {
    this.setState({ count: this.state.count + 1 });
    return this.state.count;
  }
}

export default {
  fetch: (req, env) => routeAgentRequest(req, env) ?? new Response("Not found", { status: 404 })
};

Streaming Chat Agent

Use AIChatAgent for chat with automatic message persistence and resumable streaming.

Install additional dependencies first:

npm install @cloudflare/ai-chat ai @ai-sdk/openai

Add wrangler.jsonc config (same pattern as base Agent):

{
  "durable_objects": {
    "bindings": [{ "name": "Chat", "class_name": "Chat" }]
  },
  "migrations": [{ "tag": "v1", "new_sqlite_classes": ["Chat"] }]
}
import { AIChatAgent } from "@cloudflare/ai-chat";
import { routeAgentRequest } from "agents";
import { streamText, convertToModelMessages } from "ai";
import { openai } from "@ai-sdk/openai";

export class Chat extends AIChatAgent<Env> {
  async onChatMessage(onFinish) {
    const result = streamText({
      model: openai("gpt-4o"),
      messages: await convertToModelMessages(this.messages),
      onFinish
    });
    return result.toUIMessageStreamResponse();
  }
}

export default {
  fetch: (req, env) => routeAgentRequest(req, env) ?? new Response("Not found", { status: 404 })
};

Client (React):

import { useAgent } from "agents/react";
import { useAgentChat } from "@cloudflare/ai-chat/react";

const agent = useAgent({ agent: "Chat", name: "my-chat" });
const { messages, input, handleSubmit } = useAgentChat({ agent });

Detailed References

When to Use Code Mode

Code Mode generates executable JavaScript instead of making individual tool calls. Use it when:

  • Chaining multiple tool calls in sequence
  • Complex conditional logic across tools
  • MCP server orchestration (multiple servers)
  • Token budget is constrained

See references/codemode.md for setup and examples.

Best Practices

  1. Prefer streaming: Use streamText and toUIMessageStreamResponse() for chat
  2. Use AIChatAgent for chat: Handles message persistence and resumable streams automatically
  3. Type your state: Agent<Env, State> ensures type safety for this.state
  4. Use @callable for RPC: Cleaner than manual WebSocket message handling
  5. Code Mode for complex workflows: Reduces round-trips and token usage
  6. Schedule vs Queue: Use schedule() for time-based, queue() for sequential processing