Optimize application performance through caching strategies, load balancing, database scaling, and monitoring. Build systems handling thousands of concurrent users.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: performance description: Optimize application performance through caching strategies, load balancing, database scaling, and monitoring. Build systems handling thousands of concurrent users. sasmp_version: "2.0.0" bonded_agent: 05-caching-performance bond_type: PRIMARY_BOND
=== PRODUCTION-GRADE SKILL CONFIG (SASMP v2.0.0) ===
atomic_operations:
- BOTTLENECK_ANALYSIS
- CACHE_IMPLEMENTATION
- LOAD_BALANCING_CONFIG
- SCALING_STRATEGY
parameter_validation: query: type: string required: true minLength: 5 maxLength: 2000 current_rps: type: integer required: false description: "Current requests per second" target_latency_ms: type: integer required: false description: "Target P99 latency in milliseconds"
retry_logic: max_attempts: 3 backoff: exponential initial_delay_ms: 1000
logging_hooks: on_invoke: "skill.performance.invoked" on_success: "skill.performance.completed" on_error: "skill.performance.failed"
exit_codes: SUCCESS: 0 INVALID_INPUT: 1 METRICS_UNAVAILABLE: 2 OPTIMIZATION_FAILED: 3
Performance Optimization Skill
Bonded to: caching-performance-agent
Quick Start
# Invoke performance skill
"My API is slow, help me optimize it"
"Set up Redis caching for my application"
"Configure load balancing for high availability"
Instructions
- Identify Bottlenecks: Profile application, analyze metrics
- Choose Strategy: Select caching, scaling, or optimization approach
- Implement Cache: Set up Redis/Memcached with appropriate pattern
- Configure Scaling: Horizontal or vertical based on needs
- Monitor Results: Set up APM and track improvements
Caching Patterns
| Pattern | Use Case | Consistency | Complexity |
|---|---|---|---|
| Cache-Aside | Read-heavy, tolerates stale | Eventual | Low |
| Write-Through | Write-heavy, needs consistency | Strong | Medium |
| Write-Behind | High throughput writes | Eventual | High |
| Refresh-Ahead | Predictable access | Strong | Medium |
Decision Tree
Performance Issue?
│
├─→ High latency → Check database queries
│ ├─→ Slow queries → Add indexes, optimize SQL
│ └─→ Network → Add caching, reduce round-trips
│
├─→ High CPU → Profile code
│ ├─→ Algorithmic → Optimize algorithms
│ └─→ Too much load → Scale horizontally
│
└─→ Memory issues → Analyze memory usage
├─→ Leaks → Find and fix leaks
└─→ Large data → Implement pagination, streaming
Examples
Example 1: Redis Cache-Aside
import redis
import json
from functools import wraps
r = redis.Redis(host='localhost', port=6379, decode_responses=True)
def cache(ttl_seconds=3600):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
cache_key = f"{func.__name__}:{args}:{kwargs}"
cached = r.get(cache_key)
if cached:
return json.loads(cached)
result = func(*args, **kwargs)
r.setex(cache_key, ttl_seconds, json.dumps(result))
return result
return wrapper
return decorator
@cache(ttl_seconds=300)
def get_expensive_data(user_id: str) -> dict:
# Expensive database query or computation
return {"user_id": user_id, "data": "..."}
Example 2: Connection Pooling
from sqlalchemy import create_engine
engine = create_engine(
DATABASE_URL,
pool_size=20,
max_overflow=10,
pool_timeout=30,
pool_recycle=1800,
pool_pre_ping=True
)
Example 3: Load Balancing (nginx)
upstream backend {
least_conn; # Least connections algorithm
server backend1:8000 weight=3;
server backend2:8000 weight=2;
server backend3:8000 weight=1;
keepalive 32; # Connection pooling
}
server {
location /api {
proxy_pass http://backend;
proxy_http_version 1.1;
proxy_set_header Connection "";
}
}
Performance Metrics
Latency Targets:
├── P50: < 50ms (typical request)
├── P95: < 200ms (most requests)
├── P99: < 500ms (almost all)
└── P99.9: < 1s (worst case)
Cache Metrics:
├── Hit Ratio: > 90% (ideal)
├── Eviction Rate: Low (stable)
└── Memory Usage: < 80% (headroom)
Database Metrics:
├── Connection Pool: < 80% utilized
├── Query Time: P95 < 100ms
└── Slow Queries: < 1% of total
Troubleshooting
Common Issues
| Issue | Cause | Solution |
|---|---|---|
| High cache miss | Poor key design | Review key patterns |
| Cache stampede | Many misses at once | Use locks or jitter |
| Memory pressure | Over-caching | Set TTL, eviction policy |
| Connection timeout | Pool exhausted | Increase pool size |
Debug Commands
# Redis stats
redis-cli INFO stats | grep -E 'keyspace|hits|misses'
# Memory usage
redis-cli INFO memory | grep used_memory_human
# Slow queries
redis-cli SLOWLOG GET 10
# Load test
wrk -t12 -c400 -d30s http://localhost/api
Test Template
# tests/test_performance.py
import pytest
import time
class TestCachePerformance:
def test_cache_hit_is_fast(self, redis_client):
# First call - cache miss
start = time.time()
result1 = get_cached_data("key1")
cold_time = time.time() - start
# Second call - cache hit
start = time.time()
result2 = get_cached_data("key1")
warm_time = time.time() - start
assert warm_time < cold_time * 0.1 # 10x faster
assert result1 == result2
def test_cache_ttl_expires(self, redis_client):
set_cached_data("key", "value", ttl=1)
time.sleep(2)
assert get_cached_data("key") is None
Resources
More by pluginagentmarketplace
View allDistribute work across multiple agents using queue-based load balancing. Use for parallel execution, work distribution, and team coordination.
agent-collaboration: Enable multi-agent brainstorming and collaborative problem-solving using pub/sub messaging. Use for complex decisions requiring multiple perspectives.
rabbitmq-operations: Manage RabbitMQ connections, queues, exchanges, and message routing. Use when working with message queues, pub/sub patterns, or distributed messaging.
Monitor system health, track metrics, detect anomalies, and generate alerts for the multi-agent orchestration system.