Convert PyTorch AT_DISPATCH macros to AT_DISPATCH_V2 format in ATen C++ code. Use when porting AT_DISPATCH_ALL_TYPES_AND*, AT_DISPATCH_FLOATING_TYPES*, or other dispatch macros to the new v2 API. For ATen kernel files, CUDA kernels, and native operator implementations.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: at-dispatch-v2 description: Convert PyTorch AT_DISPATCH macros to AT_DISPATCH_V2 format in ATen C++ code. Use when porting AT_DISPATCH_ALL_TYPES_AND*, AT_DISPATCH_FLOATING_TYPES*, or other dispatch macros to the new v2 API. For ATen kernel files, CUDA kernels, and native operator implementations.
AT_DISPATCH to AT_DISPATCH_V2 Converter
This skill helps convert PyTorch's legacy AT_DISPATCH macros to the new AT_DISPATCH_V2 format, as defined in aten/src/ATen/Dispatch_v2.h.
When to use this skill
Use this skill when:
- Converting AT_DISPATCH_* macros to AT_DISPATCH_V2
- Porting ATen kernels to use the new dispatch API
- Working with files in
aten/src/ATen/native/that use dispatch macros - User mentions "AT_DISPATCH", "dispatch v2", "Dispatch_v2.h", or macro conversion
Quick reference
Old format:
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, dtype, "kernel_name", [&]() {
// lambda body
});
New format:
AT_DISPATCH_V2(dtype, "kernel_name", AT_WRAP([&]() {
// lambda body
}), AT_EXPAND(AT_ALL_TYPES), kBFloat16, kHalf, kBool);
Key transformations
- Reorder arguments:
scalar_typeandnamecome first, then lambda, then types - Wrap the lambda: Use
AT_WRAP(lambda)to handle internal commas - Expand type groups: Use
AT_EXPAND(AT_ALL_TYPES)instead of implicit expansion - List individual types: Add extra types (kHalf, kBFloat16, etc.) after expanded groups
- Add include:
#include <ATen/Dispatch_v2.h>near other Dispatch includes
Instructions
Step 1: Add the Dispatch_v2.h include
Add the v2 header near the existing #include <ATen/Dispatch.h>:
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
Keep the old Dispatch.h include for now (other code may still need it).
Step 2: Identify the old dispatch pattern
Common patterns to convert:
AT_DISPATCH_ALL_TYPES_AND{2,3,4}(type1, type2, ..., scalar_type, name, lambda)AT_DISPATCH_FLOATING_TYPES_AND{2,3}(type1, type2, ..., scalar_type, name, lambda)AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND{2,3}(type1, ..., scalar_type, name, lambda)AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND{2,3}(type1, ..., scalar_type, name, lambda)
Step 3: Map the old macro to type groups
Identify which type group macro corresponds to the base types:
| Old macro base | AT_DISPATCH_V2 type group |
|---|---|
ALL_TYPES | AT_EXPAND(AT_ALL_TYPES) |
FLOATING_TYPES | AT_EXPAND(AT_FLOATING_TYPES) |
INTEGRAL_TYPES | AT_EXPAND(AT_INTEGRAL_TYPES) |
COMPLEX_TYPES | AT_EXPAND(AT_COMPLEX_TYPES) |
ALL_TYPES_AND_COMPLEX | AT_EXPAND(AT_ALL_TYPES_AND_COMPLEX) |
For combined patterns, use multiple AT_EXPAND() entries:
// Old: AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(...)
// New: AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_COMPLEX_TYPES), type1, type2
Step 4: Extract the individual types
From AT_DISPATCH_*_AND2(type1, type2, ...) or AT_DISPATCH_*_AND3(type1, type2, type3, ...), extract the individual types (type1, type2, etc.).
These become the trailing arguments after the type group:
AT_DISPATCH_V2(..., AT_EXPAND(AT_ALL_TYPES), kBFloat16, kHalf, kBool)
^^^^^^^^^^^^^^^^^^^^^^^^
Individual types from AND3
Step 5: Transform to AT_DISPATCH_V2
Apply the transformation:
Pattern:
AT_DISPATCH_V2(
scalar_type, // 1st: The dtype expression
"name", // 2nd: The debug string
AT_WRAP(lambda), // 3rd: The lambda wrapped in AT_WRAP
type_groups, // 4th+: Type groups with AT_EXPAND()
individual_types // Last: Individual types
)
Example transformation:
// BEFORE
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool,
iter.dtype(),
"min_values_cuda",
[&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}
);
// AFTER
AT_DISPATCH_V2(
iter.dtype(),
"min_values_cuda",
AT_WRAP([&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}),
AT_EXPAND(AT_ALL_TYPES),
kBFloat16, kHalf, kBool
);
Step 6: Handle multi-line lambdas
For lambdas with internal commas or complex expressions, AT_WRAP is essential:
AT_DISPATCH_V2(
dtype,
"complex_kernel",
AT_WRAP([&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(upper_bound(), 0) // Commas inside!
);
}),
AT_EXPAND(AT_ALL_TYPES)
);
Step 7: Verify the conversion
Check that:
-
AT_WRAP()wraps the entire lambda - Type groups use
AT_EXPAND() - Individual types don't have
AT_EXPAND()(justkBFloat16, notAT_EXPAND(kBFloat16)) - Argument order is: scalar_type, name, lambda, types
- Include added:
#include <ATen/Dispatch_v2.h>
Type group reference
Available type group macros (use with AT_EXPAND()):
AT_INTEGRAL_TYPES // kByte, kChar, kInt, kLong, kShort
AT_FLOATING_TYPES // kDouble, kFloat
AT_COMPLEX_TYPES // kComplexDouble, kComplexFloat
AT_QINT_TYPES // kQInt8, kQUInt8, kQInt32
AT_ALL_TYPES // INTEGRAL_TYPES + FLOATING_TYPES
AT_ALL_TYPES_AND_COMPLEX // ALL_TYPES + COMPLEX_TYPES
AT_INTEGRAL_TYPES_V2 // INTEGRAL_TYPES + unsigned types
AT_BAREBONES_UNSIGNED_TYPES // kUInt16, kUInt32, kUInt64
AT_FLOAT8_TYPES // Float8 variants
Common patterns
Pattern: AT_DISPATCH_ALL_TYPES_AND2
// Before
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, dtype, "op", [&]() {
kernel<scalar_t>(data);
});
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>(data);
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
Pattern: AT_DISPATCH_FLOATING_TYPES_AND3
// Before
AT_DISPATCH_FLOATING_TYPES_AND3(kHalf, kBFloat16, kFloat8_e4m3fn,
tensor.scalar_type(), "float_op", [&] {
process<scalar_t>(tensor);
});
// After
AT_DISPATCH_V2(tensor.scalar_type(), "float_op", AT_WRAP([&] {
process<scalar_t>(tensor);
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf, kBFloat16, kFloat8_e4m3fn);
Pattern: AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2
// Before
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
kComplexHalf, kHalf,
self.scalar_type(),
"complex_op",
[&] {
result = compute<scalar_t>(self);
}
);
// After
AT_DISPATCH_V2(
self.scalar_type(),
"complex_op",
AT_WRAP([&] {
result = compute<scalar_t>(self);
}),
AT_EXPAND(AT_ALL_TYPES),
AT_EXPAND(AT_COMPLEX_TYPES),
kComplexHalf,
kHalf
);
Edge cases
Case 1: No extra types (rare)
// Before
AT_DISPATCH_ALL_TYPES(dtype, "op", [&]() { kernel<scalar_t>(); });
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES));
Case 2: Many individual types (AND4, AND5, etc.)
// Before
AT_DISPATCH_FLOATING_TYPES_AND4(kHalf, kBFloat16, kFloat8_e4m3fn, kFloat8_e5m2,
dtype, "float8_op", [&]() { kernel<scalar_t>(); });
// After
AT_DISPATCH_V2(dtype, "float8_op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf, kBFloat16, kFloat8_e4m3fn, kFloat8_e5m2);
Case 3: Lambda with no captures
// Before
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBool, dtype, "op", []() {
static_kernel<scalar_t>();
});
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([]() {
static_kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBool);
Benefits of AT_DISPATCH_V2
- No arity in macro name: Don't need different macros for AND2, AND3, AND4
- Composable type sets: Mix and match type groups with
AT_EXPAND() - Extensible: Easy to add more types without hitting macro limits
- Clearer: Type groups are explicit, not implicit in macro name
Important notes
- Keep
#include <ATen/Dispatch.h>- other code may need it - The
AT_WRAP()is mandatory - prevents comma parsing issues in the lambda - Type groups need
AT_EXPAND(), individual types don't - The v2 API is in
aten/src/ATen/Dispatch_v2.h- refer to it for full docs - See the header file for the Python script to regenerate the macro implementation
Workflow
When asked to convert AT_DISPATCH macros:
- Read the file to identify all AT_DISPATCH uses
- Add
#include <ATen/Dispatch_v2.h>if not present - For each dispatch macro:
- Identify the pattern and extract components
- Map the base type group
- Extract individual types
- Construct the AT_DISPATCH_V2 call
- Apply with Edit tool
- Show the user the complete converted file
- Explain what was changed
Do NOT compile or test the code - focus on accurate conversion only.
More by pytorch
View allWrite docstrings for PyTorch functions and methods following PyTorch conventions. Use when writing or updating docstrings in PyTorch code.
Guide users through creating Agent Skills for Claude Code. Use when the user wants to create, write, author, or design a new Skill, or needs help with SKILL.md files, frontmatter, or skill structure.
Add unsigned integer (uint) type support to PyTorch operators by updating AT_DISPATCH macros. Use when adding support for uint16, uint32, uint64 types to operators, kernels, or when user mentions enabling unsigned types, barebones unsigned types, or uint support.
