hqq-quantization: Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: hqq-quantization description: Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers. version: 1.0.0 author: Orchestra Research license: MIT tags: [Quantization, HQQ, Optimization, Memory Efficiency, Inference, Model Compression] dependencies: [hqq>=0.2.0, torch>=2.0.0]
HQQ - Half-Quadratic Quantization
Fast, calibration-free weight quantization supporting 8/4/3/2/1-bit precision with multiple optimized backends.
When to use HQQ
Use HQQ when:
- Quantizing models without calibration data (no dataset needed)
- Need fast quantization (minutes vs hours for GPTQ/AWQ)
- Deploying with vLLM or HuggingFace Transformers
- Fine-tuning quantized models with LoRA/PEFT
- Experimenting with extreme quantization (2-bit, 1-bit)
Key advantages:
- No calibration: Quantize any model instantly without sample data
- Multiple backends: PyTorch, ATEN, TorchAO, Marlin, BitBlas for optimized inference
- Flexible precision: 8/4/3/2/1-bit with configurable group sizes
- Framework integration: Native HuggingFace and vLLM support
- PEFT compatible: Fine-tune quantized models with LoRA
Use alternatives instead:
- AWQ: Need calibration-based accuracy, production serving
- GPTQ: Maximum accuracy with calibration data available
- bitsandbytes: Simple 8-bit/4-bit without custom backends
- llama.cpp/GGUF: CPU inference, Apple Silicon deployment
Quick start
Installation
pip install hqq
# With specific backend
pip install hqq[torch] # PyTorch backend
pip install hqq[torchao] # TorchAO int4 backend
pip install hqq[bitblas] # BitBlas backend
pip install hqq[marlin] # Marlin backend
Basic quantization
from hqq.core.quantize import BaseQuantizeConfig, HQQLinear
import torch.nn as nn
# Configure quantization
config = BaseQuantizeConfig(
nbits=4, # 4-bit quantization
group_size=64, # Group size for quantization
axis=1 # Quantize along output dimension
)
# Quantize a linear layer
linear = nn.Linear(4096, 4096)
hqq_linear = HQQLinear(linear, config)
# Use normally
output = hqq_linear(input_tensor)
Quantize full model with HuggingFace
from transformers import AutoModelForCausalLM, HqqConfig
# Configure HQQ
quantization_config = HqqConfig(
nbits=4,
group_size=64,
axis=1
)
# Load and quantize
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=quantization_config,
device_map="auto"
)
# Model is quantized and ready to use
Core concepts
Quantization configuration
HQQ uses BaseQuantizeConfig to define quantization parameters:
from hqq.core.quantize import BaseQuantizeConfig
# Standard 4-bit config
config_4bit = BaseQuantizeConfig(
nbits=4, # Bits per weight (1-8)
group_size=64, # Weights per quantization group
axis=1 # 0=input dim, 1=output dim
)
# Aggressive 2-bit config
config_2bit = BaseQuantizeConfig(
nbits=2,
group_size=16, # Smaller groups for low-bit
axis=1
)
# Mixed precision per layer type
layer_configs = {
"self_attn.q_proj": BaseQuantizeConfig(nbits=4, group_size=64),
"self_attn.k_proj": BaseQuantizeConfig(nbits=4, group_size=64),
"self_attn.v_proj": BaseQuantizeConfig(nbits=4, group_size=64),
"mlp.gate_proj": BaseQuantizeConfig(nbits=2, group_size=32),
"mlp.up_proj": BaseQuantizeConfig(nbits=2, group_size=32),
"mlp.down_proj": BaseQuantizeConfig(nbits=4, group_size=64),
}
HQQLinear layer
The core quantized layer that replaces nn.Linear:
from hqq.core.quantize import HQQLinear
import torch
# Create quantized layer
linear = torch.nn.Linear(4096, 4096)
hqq_layer = HQQLinear(linear, config)
# Access quantized weights
W_q = hqq_layer.W_q # Quantized weights
scale = hqq_layer.scale # Scale factors
zero = hqq_layer.zero # Zero points
# Dequantize for inspection
W_dequant = hqq_layer.dequantize()
Backends
HQQ supports multiple inference backends for different hardware:
from hqq.core.quantize import HQQLinear
# Available backends
backends = [
"pytorch", # Pure PyTorch (default)
"pytorch_compile", # torch.compile optimized
"aten", # Custom CUDA kernels
"torchao_int4", # TorchAO int4 matmul
"gemlite", # GemLite CUDA kernels
"bitblas", # BitBlas optimized
"marlin", # Marlin 4-bit kernels
]
# Set backend globally
HQQLinear.set_backend("torchao_int4")
# Or per layer
hqq_layer.set_backend("marlin")
Backend selection guide:
| Backend | Best For | Requirements |
|---|---|---|
| pytorch | Compatibility | Any GPU |
| pytorch_compile | Moderate speedup | torch>=2.0 |
| aten | Good balance | CUDA GPU |
| torchao_int4 | 4-bit inference | torchao installed |
| marlin | Maximum 4-bit speed | Ampere+ GPU |
| bitblas | Flexible bit-widths | bitblas installed |
HuggingFace integration
Load pre-quantized models
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load HQQ-quantized model from Hub
model = AutoModelForCausalLM.from_pretrained(
"mobiuslabsgmbh/Llama-3.1-8B-HQQ-4bit",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")
# Use normally
inputs = tokenizer("Hello, world!", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)
Quantize and save
from transformers import AutoModelForCausalLM, HqqConfig
# Quantize
config = HqqConfig(nbits=4, group_size=64)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=config,
device_map="auto"
)
# Save quantized model
model.save_pretrained("./llama-8b-hqq-4bit")
# Push to Hub
model.push_to_hub("my-org/Llama-3.1-8B-HQQ-4bit")
Mixed precision quantization
from transformers import AutoModelForCausalLM, HqqConfig
# Different precision per layer type
config = HqqConfig(
nbits=4,
group_size=64,
# Attention layers: higher precision
# MLP layers: lower precision for memory savings
dynamic_config={
"attn": {"nbits": 4, "group_size": 64},
"mlp": {"nbits": 2, "group_size": 32}
}
)
vLLM integration
Serve HQQ models with vLLM
from vllm import LLM, SamplingParams
# Load HQQ-quantized model
llm = LLM(
model="mobiuslabsgmbh/Llama-3.1-8B-HQQ-4bit",
quantization="hqq",
dtype="float16"
)
# Generate
sampling_params = SamplingParams(temperature=0.7, max_tokens=100)
outputs = llm.generate(["What is machine learning?"], sampling_params)
vLLM with custom HQQ config
from vllm import LLM
llm = LLM(
model="meta-llama/Llama-3.1-8B",
quantization="hqq",
quantization_config={
"nbits": 4,
"group_size": 64
}
)
PEFT/LoRA fine-tuning
Fine-tune quantized models
from transformers import AutoModelForCausalLM, HqqConfig
from peft import LoraConfig, get_peft_model
# Load quantized model
quant_config = HqqConfig(nbits=4, group_size=64)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=quant_config,
device_map="auto"
)
# Apply LoRA
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
# Train normally with Trainer or custom loop
QLoRA-style training
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
output_dir="./hqq-lora-output",
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-4,
num_train_epochs=3,
fp16=True,
logging_steps=10,
save_strategy="epoch"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator
)
trainer.train()
Quantization workflows
Workflow 1: Quick model compression
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig
# 1. Configure quantization
config = HqqConfig(nbits=4, group_size=64)
# 2. Load and quantize (no calibration needed!)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")
# 3. Verify quality
prompt = "The capital of France is"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0]))
# 4. Save
model.save_pretrained("./llama-8b-hqq")
tokenizer.save_pretrained("./llama-8b-hqq")
Workflow 2: Optimize for inference speed
from hqq.core.quantize import HQQLinear
from transformers import AutoModelForCausalLM, HqqConfig
# 1. Quantize with optimal backend
config = HqqConfig(nbits=4, group_size=64)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=config,
device_map="auto"
)
# 2. Set fast backend
HQQLinear.set_backend("marlin") # or "torchao_int4"
# 3. Compile for additional speedup
import torch
model = torch.compile(model)
# 4. Benchmark
import time
inputs = tokenizer("Hello", return_tensors="pt").to(model.device)
start = time.time()
for _ in range(10):
model.generate(**inputs, max_new_tokens=100)
print(f"Avg time: {(time.time() - start) / 10:.2f}s")
Best practices
- Start with 4-bit: Best quality/size tradeoff for most models
- Use group_size=64: Good balance; smaller for extreme quantization
- Choose backend wisely: Marlin for 4-bit Ampere+, TorchAO for flexibility
- Verify quality: Always test generation quality after quantization
- Mixed precision: Keep attention at higher precision, compress MLP more
- PEFT training: Use LoRA r=16-32 for good fine-tuning results
Common issues
Out of memory during quantization:
# Quantize layer-by-layer
from hqq.models.hf.base import AutoHQQHFModel
model = AutoHQQHFModel.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=config,
device_map="sequential" # Load layers sequentially
)
Slow inference:
# Switch to optimized backend
from hqq.core.quantize import HQQLinear
HQQLinear.set_backend("marlin") # Requires Ampere+ GPU
# Or compile
model = torch.compile(model, mode="reduce-overhead")
Poor quality at 2-bit:
# Use smaller group size
config = BaseQuantizeConfig(
nbits=2,
group_size=16, # Smaller groups help at low bits
axis=1
)
References
- Advanced Usage - Custom backends, mixed precision, optimization
- Troubleshooting - Common issues, debugging, benchmarks
Resources
- Repository: https://github.com/mobiusml/hqq
- Paper: Half-Quadratic Quantization
- HuggingFace Models: https://huggingface.co/mobiuslabsgmbh
- Version: 0.2.0+
- License: Apache 2.0
More by zechenzhangAGI
View alllambda-labs-gpu-cloud: Reserved and on-demand GPU cloud instances for ML training and inference. Use when you need dedicated GPU instances with simple SSH access, persistent filesystems, or high-performance multi-node clusters for large-scale training.
Guarantee valid JSON/XML/code structure during generation, use Pydantic models for type-safe outputs, support local models (Transformers, vLLM), and maximize inference speed with Outlines - dottxt.ai's structured generation library
optimizing-attention-flash: Optimizes transformer attention with Flash Attention for 2-4x speedup and 10-20x memory reduction. Use when training/running transformers with long sequences (>512 tokens), encountering GPU memory issues with attention, or need faster inference. Supports PyTorch native SDPA, flash-attn library, H100 FP8, and sliding window attention.
name: ray-data
